Decision Making
for
Machine Learning

(Reading Group Series Part 1)



Why is decision theory important?

Espistemology also involves decision making!
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“All knowledge 1s ultimately probabilistic,
and the confidence we place in our beliefs
must be tempered by the uncertainty that

shadows all things.”

— Bertrand Russell
The Problems of Philosophy



Why is decision theory important?

Espistemology also involves decision making!
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“All knowledge 1s ultimately probabilistic,
and the confidence we place in our beliefs
must be tempered by the uncertainty that

shadows all things.”

— Bertrand Russell
The Problems of Philosophy

“It’s anticipation of regret, the fear of
making the wrong choice, that drives
decision-making, not the probability
of making a mistake in prediction.”

— Danzel Kahneman
Thinking, Fast and Slow



Role of decision making in ML
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1. A Justice-Based Framework for the Analysis of Algorithmic Fairness Utility Tradeoffs, Hertweck et. al, arXiv 2023



Role of decision making in ML
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2. Causal Strategic Learning with Competitive Selection, Vo et. al, AAAT 2024 (Oral)
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Role of decision making in ML
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3. Domain generalisation via Imprecise Learning, Singh et. al, ICML 2024 (Spotlight)



Basics of Decision Theory

e An unknown quantity 6 € © (state of nature)
e Actionsa € A

e Lossfunction L : ©® x A —- R

ai a9
L(Ql,al) L(@l,ag)
L(02,a1) | L(02,a2)
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Basics of Decision Theory

An unknown quantity 0 € © (state of nature)
Actions a € A

Loss function L : © x A — R
(Optional) Prior Information m € A(O)
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Bayesian Expected Loss

e Intutively, most natural expected loss is
one involving uncertainty in 6 € ©.

o If 7(A) € A(O) is the prior over € then
the Bayesian expected loss of action a is

p(m,a) = Epr[L(0, a)
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Basics of (Statistical) Decision Theory

An unknown quantity 0 € © (state of nature)
Actions a € A

Loss function L : ©® x A —- R

(Optional) Prior Information m € A(O)

Outcome (r.v.) X € H from statistical = | L(61,a1) | L(61,as)
investigation performed on 6




Basics of (Statistical) Decision Theory

An unknown quantity 0 € © (state of nature)
Actions a € A

Loss function L : ©® x A —- R

(Optional) Prior Information m € A(O)

Outcome (r.v.) X € H from statistical = | L(61,a1) | L(61,as)
investigation performed on 6

P(X) should depend on 6 !




Decision rules

e A (non randomized) decision rule § maps
outcomes to actions.

e Decision rule 0 in no data decisions are
simply actions.
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Decision rules

e A (non randomized) decision rule § maps
outcomes to actions.

e Decision rule 0 in no data decisions are
simply actions.

a; if x <0.05
o(x) = .
a, 1if x > 0.05

Example: Hypothesis Testing
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Decision rules — Frequentist Risk

e The frequentist perspective is to evaluate,
for each 6, how much they expect to lose
if 9(X) is repeatedly used with varying X
in the problem.

a o
e The risk function of decision rule d(x) is
defined by < | L(b1,a1) | L(01,a2)
R(0,0) = Exp, [L(0,6(X))] o
L | L(O2,a1) | L(O2,a0)




Decision rules — Frequentist Risk

The frequentist perspective is to evaluate,
for each 6, how much they expect to lose
if 9(X) is repeatedly used with varying X
in the problem.

The risk function of decision rule 6(z) is

defined by
R(0,0) =Ex~p,[L(0,5(X))]

How to compare decision rules?
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Decision rules — Frequentist Risk

e The risk function of decision rule d(x) is

defined by
R(0,0) = Ex~p,[L(6,0(X))]

e A decision rule 47 is R-better than a
decision rule 0o iff 01 = 09 i.e.

Voeoo R(Q, (51) < R(9,52)
and

30O R(6,5) < R(6,0)
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Decision rules — Bayes Risk

e The Bayes risk of decision rule d(x) w.r.t
prior 7 € A(©) is defined by

T(ﬂ'a 5) — EQN?T[EXNPQ [L(Qa 5(X))H
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Randomized Decision rules

e A randomized decision rule §(z, ) is
for each x a probability distribution on A,
which interpretation that if x is observed,
d(xz, A) is a probability than an action
in A will be chosen.
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Randomized Decision rules

e A randomized decision rule §(z, ) is
for each x a probability distribution on A,
which interpretation that if x is observed,
d(xz, A) is a probability than an action
in A will be chosen.

e In no data problem, randomized decision
rule is called randomized action and is
also a probability distribution on A.
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Randomized Decision rules

e Non randomized decision rules are special case
of randomized decision rules, where for each x
a specific action has probability 1.

1 ifdé(x)e A

0 otherwise

(0)(z, A) = 14(0(x)) = {

ai a-
L(leal L(917a2
L(02,a1) | L(02,a2




Randomized Decision rules

e Non randomized decision rules are special case
of randomized decision rules, where for each x
a specific action has probability 1.

1 ifdé(x)e A

0 otherwise

(0)(z, A) = 14(0(x)) = {

ai a-
L(leal L(917a2
L(02,a1) | L(02,a2




Randomized Decision rules
e The loss function of randomized rule is
defined as
L(Qa 6(567 )) — ané(m,-) [L(Q, a)]

e The risk function of randomized rule is

defined as
R(Qv 5) — EXNPG [L(Qa 5(X7 ))]
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Randomized Decision rules

e The loss function of randomized rule is

defined as
L(0,0(x,-)) = Eqns(z,) | L(0,a)]

e The risk function of randomized rule is

defined as

R(Qv 5) — EXNPQ [L(Qa 5(X7 ))] ©

e The comparsion of randomized ¢ is similar
to non-randomized rule.

aQ
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Decision Principles: Conditional Bayes

o If 7(0) € A(O) is the prior over 6 then
the Bayesian expected loss of action a is

p(m,a) = Epr[L(6, )

Conditional Bayes Principle: Choose action
a* € A such that

a” = arg min p(m, a) o




Decision Principle — Bayes Risk Principle

e The Bayes risk of decision rule d(x) w.r.t
prior 7 € A(©) is defined by

T(Wa 5) — EQNW[EXNPQ [L(Qa 5(X))H

e A decision rule 9; is preferred to rule o5

if 7“(71',51) < T(?T,dg). S
J :arggréllr)lr('zr,(ﬂ @

where 0% is called the Bayes rule.




Decision Principle — Minmax Principle

e The worst case risk of decision rule §(x)

sup R(6,9)
0cO

e A decision rule d* is minmax decision rule if

0" = arg inf sup R(6,9) < | L(01,a1)

oeD 0cO
@
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e The worst case risk of decision rule §(x)
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Decision Principle — Invariance Principle
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What makes two decision problems invariant ¢




Decision Principle — Invariance Principle
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We define the group of transformations g € G of H

—

D
)\

<>

L(Qz, al)




Decision Principle — Invariance Principle

&7 -4
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< | L(01,a1)|L(01, az) = L(01,a1)L(01,a2)
D N
S| L(02,a1)|L(02,a2) > £ L(02,a1) L(02, asz)

W.r.t. the of transformations g € G of H we define the corresponding transformation on © as G = {glg € G}

Ex~p,[h(9(X))] = Ex~p, g, [M(X)]



Decision Principle — Invariance Principle
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Invariance of Loss function: L(#,a) is called invariant under G if, Vg € G and

a € A there exists an a* € A such that
L(0,a) = L(g(0),a")

we can then denote a* with g(a)

Ve




Decision Principle — Invariance Principle

Invariance of Loss function: L(#,a) is called invariant under G if, Vg € G and
a € A there exists an a* € A such that

L(0,a) = L(g(#),a”) V6ecO

we can then denote a* with g(a)

If a decision problem is invariant under group G, then a decision rule §(z) is
also invariant if for all z € H and g € G

0(g(x)) = g(o(x))



Nash Equilibrium

e Weaker solution concept than frequentist
dominanance of decision, but stronger than
Bayes optimality

e A nash equilibrium (6*,a*) can be defined as ey
from banks perspective iy @

L0 ,a") < L0 ,a) Vaec A
from applicants perspective

L(0*,a") < L(0,a™) VOe€O




Utility and Preferences

e Utility tries to assign numbers to a subjective idea of “value”.

e Preferences are more objective since they represent ordering over items.
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Utility and Preferences

e Utility tries to assign numbers to a subjective idea of “value”.

e Preferences are more objective since they represent ordering over items.

e Utility is intrinsic and hard to measure. Therefore it is inferred with
revealed preferences.
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Rationality Axioms on Agent’s Preferences

e Completeness: Agent must be able to compare any two items
in the set i.e. Va,b € A either a > b or b > a or both.

O-&

e Transitivity: Va,b,c € A, a = b and b > ¢ must imply a > c.

O-&-8




Utility construction with rational preferences

O-&-9

u(apple)=1 o u(strawberry)=0

How do we construct utility in uncertainty?



Utility construction for uncertainty

Assuming a preference on distributions A(\)
e (Completeness): Either ¢ = g3 or ¢o = ¢4
o (Trasitivity): If g1 > g2 and ¢2 > ¢; then ¢; > g3

¢ (Archimedean Property): If g; > g2 > g3 then 3 € € (0,1) such that

(1 —€)q1 +€q3 > q2 = eq1 + (1 — €)qs

¢ (Independence of Irrelevant Alternatives) For any ¢3 and € € (0, 1],

1>~ qe iff eqr +(1—¢€)gs > eqa+ (1 —€)gs



VNM Theorem: Expected Utility Maximization

Under previous assumptions there exists a continuous affine utility function
u: A — [0,1] such that

g=p i Exog[u(N)] < Exvplu(M)]
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