Decision Making Stackelberg game & Bayesian persuasion in Machine Learning

Recap

Strategic Behaviour

I can borrow money from a friend to my account until loan approval

Recap

Utility and Preferences

- Utility tries to assign numbers to a subjective idea of "value".
- Preferences are more objective since they represent ordering over items.
- Utility is intrinsic and hard to measure. Therefore it is inferred with revealed preferences.

Rationality Axioms on Agent's Preferences

• Completeness: Agent must be able to compare any two items in the set i.e. $\forall a, b \in A$ either $a \succeq b$ or $b \succeq a$ or both.

• Transitivity: $\forall a, b, c \in A, a \succeq b \text{ and } b \succeq c \text{ must imply } a \succeq c.$

Utility construction with rational preferencesUtility construction for uncertaintyAssuming a preference on distributions $\Delta(\lambda)$

How do we construct utility in uncertainty?

- (Completeness): Either $q_1 \succeq q_2$ or $q_2 \succeq q_1$
- (Trasitivity): If $q_1 \succ q_2$ and $q_2 \succ q_1$ then $q_1 \succ q_3$
- (Archimedean Property): If $q_1 \succ q_2 \succ q_3$ then $\exists \epsilon \in (0, 1)$ such that

$$(1-\epsilon)q_1 + \epsilon q_3 \succ q_2 \succ \epsilon q_1 + (1-\epsilon)q_3$$

• (Independence of Irrelevant Alternatives) For any q_3 and $\epsilon \in (0, 1]$,

$$q_1 \succ q_2$$
 iff $\epsilon q_1 + (1 - \epsilon)q_3 \succ \epsilon q_2 + (1 - \epsilon)q_3$

Utility

• $U: \mathscr{R} \to \mathbb{R}$, such that

• $r_1 > r_2 \iff U(r_1) > U(r_2) \quad \forall r_1, r_2 \in \mathscr{R}$ • $P_1 > P_2 \iff \mathbb{E}_{r \sim P_1} \left[U(r) \right] > \mathbb{E}_{r \sim P_2} \left[U(r) \right] \quad \forall P_1, P_2 \in \Delta(\mathscr{R})$

Stackelberg game in Strategic Classification

- Given a distribution D over a population \mathcal{X} , a cost function $c: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$, and a target classifier $h: \mathcal{X} \to \{-1,1\}$:
 - 1. Decision maker (DM) publishes a classifier $f: \mathcal{X} \to \{-1, 1\}$.
 - some strategy $\psi : \mathcal{X} \to \mathcal{X}$.

2. Decision subject (or agent) observes their initial value $x_0 \sim D$ and produces a new value $x' = \psi(x_0)$, for

Stackelberg game in Strategic Classification

- Given a distribution D over a population \mathcal{X} , a cost function $c: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$, and a target classifier $h: \mathcal{X} \to \{-1,1\}$:
 - 1. Decision maker (DM) publishes a classifier $f: \mathcal{X} \to \{-1, 1\}$.
 - some strategy $\psi : \mathcal{X} \to \mathcal{X}$.
- DM's payoff: $r_{DM}(f, x_0) = 1 \{ h(x') = f(x') \}$
- Agent's payoff: $r_{Ag}(x_0, \psi) = f(x') c(x_0, x')$
- DM's expected utility: $\mathbb{E}_{x_0 \sim D} \left[r_{DM}(f, x_0) \right] = \mathbb{E}_{x_0 \sim D}$

2. Decision subject (or agent) observes their initial value $x_0 \sim D$ and produces a new value $x' = \psi(x_0)$, for

$$\int \left[1\left\{ h\left(x'\right) = f\left(x'\right) \right\} \right]$$

Stackelberg game in Strategic Classification

- Given a distribution D over a population \mathcal{X} , a cost function $c: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$, and a target classifier $h: \mathcal{X} \to \{-1,1\}$:
 - 1. Decision maker (DM) publishes a classifier $f: \mathcal{X} \to \{-1, 1\}$.
 - some strategy $\psi : \mathcal{X} \to \mathcal{X}$.
- DM's payoff: $r_{DM}(f, x_0) = 1 \{ h(x') = f(x') \}$
- Agent's payoff: $r_{Ag}(x_0, \psi) = f(x') c(x_0, x')$
- DM's expected utility: $\mathbb{E}_{x_0 \sim D} \left[r_{DM}(f, x_0) \right] = \mathbb{E}_{x_0 \sim D}$

2. Decision subject (or agent) observes their initial value $x_0 \sim D$ and produces a new value $x' = \psi(x_0)$, for

$$\int \left[1\left\{ h\left(x'\right) = f\left(x'\right) \right\} \right]$$

No uncertainty in $r_{Ag}!$

Stackelberg game Equilibrium

- DM's expected utility: $\mathbb{E}_{x_0 \sim D} \left[r_{DM}(f, x_0) \right]$
- Agent's payoff: $r_{Ag}(x_0, \psi) = f(x') c(x_0, x')$

- Stackelberg equilibrium (subgame perfect Nash equilibrium):
 - Agent's <u>best response</u>: $\psi(x_0) = \arg ma$ $x \in$

• DM's optimal strategy: $f^* = \arg$ $ma_{f:\mathcal{X} \to \{\cdot\}}$

$$= \mathbb{E}_{x_0 \sim D} \left[1 \left\{ h(x') = f(x') \right\} \right]$$

$$\sup_{x \in \mathcal{X}} f(x) - c(x_0, x)$$

$$\sup_{x_0 \sim D} \mathbb{E}_{x_0 \sim D} \left[1 \left\{ h\left(\psi(x_0) \right) = f\left(\psi(x_0) \right) \right\} \right]$$

Stackelberg game

- Stackelberg equilibrium:
 - Agent's best response: $\psi(x_0) = \arg \max f(x) c(x_0, x)$

 \Rightarrow DM requires knowledge of ψ . \Rightarrow Intersection between Decision Making and Machine Learning!

 $x \in \mathcal{X}$

• DM's optimal strategy: $f^* = \arg \max_{f:\mathcal{X} \to \{-1,1\}} \mathbb{E}_{x_0 \sim D} \left[1 \left\{ h\left(\psi(x_0) \right) = f\left(\psi(x_0) \right) \right\} \right]$

Bayesian Persuasion

- $\sigma \sim S(\theta).$
- 2. The receiver observes σ , the signalling policy $p(\sigma \mid \theta)$, and the prior Π .

- For any utility function $u_{receiver}(a, \theta)$,
 - The receiver's <u>subjective</u> expected up
 - The receiver's posterior belief: $\Pi'(\hat{\theta} \mid \sigma) \propto p(\sigma \mid \theta) \Pi(\theta)$

1. The sender observes the realised state of the world $\theta \sim \Pi$, and produces a signal

tility:
$$\mathbb{E}_{\tilde{\theta} \sim \Pi'} \left[u_{receiver}(a, \tilde{\theta}) \mid \sigma \right],$$

Bayesian Persuasion

- For any utility function $u_{receiver}(a, \theta)$,
 - The receiver's <u>subjective</u> expected utility: $\mathbb{E}_{\tilde{\theta} \sim \Pi'} \left[u \right]$
 - The receiver's posterior belief: $\Pi'(\tilde{\theta} \mid \sigma) \propto p(\sigma \mid \theta)$
- The receiver's optimal action: $a^* := \arg \max_{a \in \mathscr{A}} \mathbb{E}_{\tilde{\theta} \sim \Pi'} \Big[$
- A straightforward signalling policy $S(\theta)$ is such that:

•
$$a' := \arg \max_{a \in \mathscr{A}} \mathbb{E}_{\tilde{\theta} \sim \Pi'} \left[u_{receiver}(a, \tilde{\theta}) \mid \sigma = a' \right]$$

$$\mathcal{U}_{receiver}(a, \tilde{\theta}) \mid \sigma$$
,
 $\mathcal{D}(\theta)$

$$u_{receiver}(a, \tilde{\theta}) \mid \sigma$$

 $\forall a': p(\sigma = a' | \theta) > 0$

Bayesian Persuasion

- For any utility function $u_{receiver}(a, \theta)$,
 - The receiver's <u>subjective</u> expected utility: $\mathbb{E}_{\tilde{\theta} \sim \Pi'} \left[u \right]$
 - The receiver's posterior belief: $\Pi'(\tilde{\theta} \mid \sigma) \propto p(\sigma \mid \theta)$
- The receiver's optimal action: $a^* := \arg \max_{a \in \mathscr{A}} \mathbb{E}_{\tilde{\theta} \sim \Pi'} \Big|_{a \in \mathscr{A}}$
- A straightforward signalling policy $S(\theta)$ is such that:

•
$$a' := \arg \max_{a \in \mathscr{A}} \mathbb{E}_{\tilde{\theta} \sim \Pi'} \left[u_{receiver}(a, \tilde{\theta}) \mid \sigma = a' \right] \quad \forall a' : p(\sigma = a' \mid \theta) > 0$$

 \Rightarrow The class of straightforward signalling policy $S(\theta)$ is sufficient to rationalise any receiver's behaviour.

$$\mathcal{U}_{receiver}(a, \tilde{\theta}) \mid \sigma$$
,
 $\mathcal{D}(\theta)$

$$u_{receiver}(a, \tilde{\theta}) \mid \sigma$$

- Given an agent with the initial value $x_0 \in \mathcal{X}$, the cost function $c : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$, and the target classifier $h : \mathcal{X} \to \{-1, 1\}$.
- Given a decision maker (DM) with a classifier $f_{\theta} := \operatorname{sign}(x^{\top}\theta)$ and a (stochastic) signalling policy $S : \Theta \to \mathscr{X}$:
 - 1. Agent reports x_0 to the DM.
 - 2. DM publishes $x_r \sim S(\theta)$.
 - 3. Agent produces a new value $x' = \psi(x_0, a_r)$, for some strategy $\psi : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$.

- Given an agent with the initial value $x_0 \in \mathcal{X}$, the cost function $c : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$, and the target classifier $h : \mathcal{X} \to \{-1, 1\}$.
- Given a decision maker (DM) with a classifier $f_{\theta} := \operatorname{sign}(x^{\top}\theta)$ and a (stochastic) signalling policy $S : \Theta \to \mathcal{X}$:
 - 1. Agent reports x_0 to the DM.
 - 2. DM publishes $x_r \sim S(\theta)$.
 - 3. Agent produces a new value $x' = \psi(x_0, x_r)$, for some strategy $\psi : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$.
- DM's payoff: $r_{DM}(x')$, e.g., $r_{DM}(x') = 1 \{ h(x') = f_{\theta}(x') \}$
- Agent's payoff: $r_{Ag}(x')$, e.g., $r_{Ag}(x') = f_{\theta}(x') c(x_0, x')$
- DM's expected utility: $\mathbb{E}_{x_r \sim S(\theta), \theta \sim \Pi} \left[r_{DM}(x') \right]$
- Agent's expected utility: $\mathbb{E}_{\theta \sim \Pi'} \left| r_{Ag}(x') \right| x_r$

• DM's expected utility: $\mathbb{E}_{a_r \sim S(\theta), \theta \sim \Pi} \left[r \right]$ • Agent's expected utility: $\mathbb{E}_{\theta \sim \Pi'} \left[r_{Ag}(x) \right]$

Bayesian incentive-compatibility (BIC):

•
$$\mathbb{E}_{\theta \sim \Pi'} \left[r_{Ag}(x' = x_r) \mid x_r \right] \ge \mathbb{E}_{\theta \sim \Pi'}$$

• $S(\theta)$ is BIC.

$$f_{DM}(x') \bigg]$$

 $\left| r_{Ag}(x' = x^{\bullet}) \right| x_r \qquad \forall x_r, x^{\bullet} \in \mathcal{X}.$

16

• DM's expected utility: $\mathbb{E}_{a_r \sim S(\theta), \theta \sim \Pi}$ • BIC constraint: $\mathbb{E}_{\theta \sim \Pi'} \left[r_{Ag}(x' = x_r) \right] x_r$

DM's optimal strategy:

$$\begin{bmatrix} r_{DM}(x') \end{bmatrix}.$$

$$x_r \end{bmatrix} \ge \mathbb{E}_{\theta \sim \Pi'} \begin{bmatrix} r_{Ag}(x' = x^{\bullet}) \mid x_r \end{bmatrix} \quad \forall x_r, x^{\bullet} \in \mathcal{X}.$$

 $\max_{S} \mathbb{E}_{a_r \sim S(\theta), \ \theta \sim \Pi} \left[r_{DM}(x') \right]$

s.t. *S* is BIC

Definition 4.1 (Equivalence Region). Two assessments θ , θ' are equivalent (w.r.t. u_{ds}) if $u_{ds}(a, \theta) - \theta'$ $u_{ds}(a', \theta) = u_{ds}(a, \theta') - u_{ds}(a', \theta'), \forall a, a' \in A.$ An equivalence region R is a subset of Θ such that for any $\theta \in R$, all θ' equivalent to θ are also in R. We denote the set of all equivalence regions by \mathcal{R} .

Theorem 4.2 (Optimal signaling policy). The decision maker's optimal signaling policy can be characterized by the following linear program OPT-LP:

 $\max_{p(\sigma=a|R), \forall a \in \mathcal{A}, R \in \mathcal{R}} \quad \sum_{a \in \mathcal{A}} \sum_{R \in \mathcal{R}} p(R) p(\sigma=a|R) u_{dm}(a)$ s.t. $\sum p(\sigma = a | R) p(R)(u_{ds}(a, R) - u_{ds}(a', R)) \ge 0, \forall a, a' \in A$ (OPT-LP) $R \in \mathcal{R}$ $\sum p(\sigma = a | R) = 1, \ \forall R, \quad p(\sigma = a | R) \ge 0, \ \forall R \in \mathcal{R}, a \in \mathcal{A},$ $a{\in}\mathcal{A}$

