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1. (a) Find all convergent subsequences of the sequence
1,—1,-1,1,1,1,—-1,—-1,—-1,—-1,1,1,1, 1,1, ....
(b) Find all convergent subsequences of the sequence
1,2,2,1,2,2,3,3,3,1,2,2,3,3,3,4,4,4,4, . ...
(c) For which real numbers « is there a subsequence of the sequence

which converges to a?

2. (a) Derive the formula
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(b) Prove that the series
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converges and determine its sum.



3. Consider the sequence {a,}, where a, = (1 + £)".

(a) Show that
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(b) Use Bernoulli's inequality
(1+2)f>1+2, x>-1, keN,

to prove the estimate

Intl 1, n e N.
Qn
(c) Use the binomial expansion
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to prove the estimate
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forneNand j=0,1,...,n]

(d) Prove that
a, < 3, neN

[Hint: 2771 < 4! for all j € N|]

(e) Deduce that {a,} converges to a real number in the interval (2,3). (This number is
Euler’s number e.)



